Strumenti Utente

Strumenti Sito


simulazione2019

Differenze

Queste sono le differenze tra la revisione selezionata e la versione attuale della pagina.

Link a questa pagina di confronto

Entrambe le parti precedenti la revisioneRevisione precedente
Prossima revisione
Revisione precedente
simulazione2019 [2022/05/16 08:18] – [Prima parte] adminsimulazione2019 [2024/03/25 17:26] (versione attuale) – [Prima parte] admin
Linea 39: Linea 39:
 === Punto 2 === === Punto 2 ===
  
-Per dimensionare il motore manca un dato importante, la velocità di sollevamento del carico. Senza questo dato non è possibile stimare la potenza richiesta quindi occorre fare un'ipotesi aggiuntiva e, per esempio, considerare una velocità di 10 cm/s (0.1 m/s). La coppia alla carrucola che serve a bilanciare il carico vale:+Per dimensionare il motore manca un dato importante, la velocità di sollevamento del carico. Senza questo dato non è possibile stimare la potenza richiesta. Allo si possono prendere due strade: 
 +  * fare un'ipotesi aggiuntiva e, per esempio, considerare una velocità di sollevamento di 10 cm/s (0.1 m/s) 
 +  * scegliere una tipologia di motore, ad esempio un MAT a 4 poli che avrà una velocità di circa 1500 rpm((3000rpm se a 2 poli, 1000rpm se a 6 poli, ecc. ma la tipologia a 4 poli è quella più comune)), calcolare la velocità di sollevamento e verificare che sia "ragionevole" 
 + 
 +/* 
 +Consideriamo innanzitutto la prima ipotesi. La coppia alla carrucola che serve a bilanciare il carico vale:
  
 `C = F cdot b = m cdot g cdot d/2 = 20 cdot 9.81 cdot 0.05 = 9.81 Nm` `C = F cdot b = m cdot g cdot d/2 = 20 cdot 9.81 cdot 0.05 = 9.81 Nm`
Linea 62: Linea 67:
  
 Un motore asincrono a 8 poli gira comunque ad almeno 600 rpm quindi bisognerebbe rivedere alcuni parametri (alzare la velocità di sollevamento) o cambiare riduttore. Un motore asincrono a 8 poli gira comunque ad almeno 600 rpm quindi bisognerebbe rivedere alcuni parametri (alzare la velocità di sollevamento) o cambiare riduttore.
 +
 +*/
 +
 +Se consideriamo la seconda ipotesi la velocità della carrucola sarà:
 +
 +`n_c=n_m / 20 = 75 r\p\m`
 +
 +che in radianti al secondo diventa:
 +
 +`omega_c = (n_c * 2 * pi)/60 ~= 8 (rad)/s`
 +
 +allora la potenza alla carrucola sarà:
 +
 +`P=C * omega_c ~= 80 W`
 +
 +Quella del motore, tenendo conto del rendimento del riduttore dovrà essere almeno il doppio. Maggiorandola ulteriormente per sicurezza si potrebbe scegliere un motore da almeno 200W.
  
 === Punto 3 e 4=== === Punto 3 e 4===
 +
 +FIXME
 +
  
  
Linea 83: Linea 107:
  
 Per il punto 4 basta applicare la tecnica batch e tradurre il diagramma SFC in ladder. Per il punto 4 basta applicare la tecnica batch e tradurre il diagramma SFC in ladder.
 +
 +
 ==== Seconda parte ==== ==== Seconda parte ====
  
Linea 99: Linea 125:
 Il terzo quesito rappresenta il circuito di principio di un convertitore di frequenza trifase. Si riconoscono un raddrizzatore trifase, il condensatore di livellamento, i 6 transistor con diodo di libera circolazione che, pilotati con segnali generati con modulazione PWM sinusoidale, permettono di ricostruire un sistema di tensione trifase con una frequenza a piacere. A questo proposito si guardi la simulazione di esempio fornita con Multisim (samples, power conversion, DC-AC). Il terzo quesito rappresenta il circuito di principio di un convertitore di frequenza trifase. Si riconoscono un raddrizzatore trifase, il condensatore di livellamento, i 6 transistor con diodo di libera circolazione che, pilotati con segnali generati con modulazione PWM sinusoidale, permettono di ricostruire un sistema di tensione trifase con una frequenza a piacere. A questo proposito si guardi la simulazione di esempio fornita con Multisim (samples, power conversion, DC-AC).
  
-FIXME 
  
-/* 
  
 ===== Seconda simulazione ===== ===== Seconda simulazione =====
Linea 153: Linea 177:
 `P = omega cdot C = 6 cdot 2.25 = 13.5 W` `P = omega cdot C = 6 cdot 2.25 = 13.5 W`
  
-Per il terzo punto si propone un diagramma SFC.+Per il terzo punto si propone un diagramma SFC (NB le frecce nei collegamenti tra i passi sono una svista, non vanno indicate!).
  
  
Linea 163: Linea 187:
 Nella figura le fotocellule sono indicate con FTC, il consenso sulla luminosità dell'ambiente è nel merker LIGHT, e il merker TTL contiene il un valore digitale che viene settato quando si attiva la telecamera CAM. Si sono fatte le seguenti ipotesi: Nella figura le fotocellule sono indicate con FTC, il consenso sulla luminosità dell'ambiente è nel merker LIGHT, e il merker TTL contiene il un valore digitale che viene settato quando si attiva la telecamera CAM. Si sono fatte le seguenti ipotesi:
   * se sono presenti difetti il segnale TTL della telecamera mantiene alto il suo valore per 3s    * se sono presenti difetti il segnale TTL della telecamera mantiene alto il suo valore per 3s 
-  * il pezzo non raggiunge la fotocellula degli espulsori prima di 0,5s e la raggiunga prima di 3s+  * il pezzo non raggiunge la fotocellula degli espulsori prima di 0,5s e la raggiunge prima di 3s
   * gli espulsori sono comandati da cilindri pneumatici monostabili mantenuti attivi con un timer visto che non si parla esplicitamente di finecorsa   * gli espulsori sono comandati da cilindri pneumatici monostabili mantenuti attivi con un timer visto che non si parla esplicitamente di finecorsa
   * si attiva il disco rotante per 15 secondi per avere la certezza che si compia almeno un giro completo   * si attiva il disco rotante per 15 secondi per avere la certezza che si compia almeno un giro completo
Linea 190: Linea 214:
   * [[https://www.analog.com/media/en/technical-documentation/data-sheets/1025fb.pdf|integrato della Linear]] per la sola compensazione del giunto freddo e [[https://www.analog.com/media/en/technical-documentation/application-notes/an28f.pdf|Application Notes]]   * [[https://www.analog.com/media/en/technical-documentation/data-sheets/1025fb.pdf|integrato della Linear]] per la sola compensazione del giunto freddo e [[https://www.analog.com/media/en/technical-documentation/application-notes/an28f.pdf|Application Notes]]
   * {{ ::misure_di_temperatura.pdf |dispense}} su misure e trasduttori di temperatura   * {{ ::misure_di_temperatura.pdf |dispense}} su misure e trasduttori di temperatura
-  * {{ ::temperature-measurements-1301891993.pdf |application note Agilent}}+  * {{ ::temperature-measurements-1301891993.pdf |application note Agilent}} su termocoppie (ma anche RTD e NTC)
   * un integrato più moderno, l'[[https://www.analog.com/media/en/technical-documentation/data-sheets/ad8494_8495_8496_8497.pdf|AD8494]] e la sua [[https://www.analog.com/media/en/technical-documentation/user-guides/AD8494-Series-Evaluation-Board-UG-1421.pdf|evaluation board]]   * un integrato più moderno, l'[[https://www.analog.com/media/en/technical-documentation/data-sheets/ad8494_8495_8496_8497.pdf|AD8494]] e la sua [[https://www.analog.com/media/en/technical-documentation/user-guides/AD8494-Series-Evaluation-Board-UG-1421.pdf|evaluation board]]
  
-*/+
  
simulazione2019.1652689082.txt.gz · Ultima modifica: 2022/05/16 08:18 da admin