Strumenti Utente

Strumenti Sito


sezione_2c

2C - Fenomeni transitori nei circuiti RC

1 I fenomeni transitori nei circuiti RC

Un circuito si dice a regime quando le grandezze non cambiano nel tempo. Il transitorio è l'intervallo di tempo tra due diverse condizioni di regime; durante il transitorio le grandezze cambiano nel tempo.

Quando carichiamo o scarichiamo un condensatore in circuito in continua1) si hanno dei transitori di carica e scarica. Lo scopo del capitolo è studiare come cambiano carica, tensione e corrente durante questi transitori.

Il circuito di figura 1 permette di studiare il transitorio di carica di un condensatore. Nel circuito troviamo:

  • il condensatore, inizialmente scarico
  • un interruttore, inizialmente aperto
  • una resistenza
  • un generatore di tensione continua

Osserviamo che questo circuito, per quanto semplice, ha validità generale perché generatore e resistenza costituiscono un generatore reale di tensione e qualunque altro circuito più complesso può essere ricondotto ad un generatore di tensione equivalente usando Thevenin.

Prima condizione di regime, con tasto T aperto e condensatore scarico:

carica tensione corrente
`q= 0` `v_c=0` `i= 0`

Alla chiusura del tasto si avrà il transitorio di carica. Si avrà una circolazione di corrente e la carica (e la tensione) ai capi del condensatore aumenteranno. Completata la carica la corrente si interromperà e la nuova condizione di regime sarà:

carica tensione corrente
`q= CV` `v_c=V` `i= 0`

dove la tensione ai capi del condensatore coincide con quella del generatore perché, in assenza di corrente, la caduta di tensione sulla resistenza vale zero.

Durante il transitorio le tre grandezze cambiano con l'andamento mostrato in figura 22). Osserviamo che:

  • la tensione cambia con continuità passando da zero al valore di tensione del generatore
  • la corrente passa istantaneamente da zero ad un valore elevato per poi diminuire fino ad annullarsi
  • entrambe le grandezze cambiano velocemente all'inizio del transitorio, poi sempre meno rapidamente fino a diventare costanti alla fine del transitorio

Questo comportamento è dovuto al fatto che all'inizio del transitorio, per il principio di continuità, la tensione ai capi del condensatore è nulla (condensatore scarico) e la corrente massima (V/R); il condensatore si carica, ma via sempre più lentamente perché mentre q e v aumentano la corrente diminuisce; infine le grandezze si stabilizzano su un nuovo valore costante giungendo a una nuova condizione di regime.

Il comportamento del condensatore è particolare perché all'inizio del transitorio si comporta come un cortocircuito (più in generale come un generatore di tensione costante pari a Q/C) mentre alla fine si comporta da interruttore aperto.

Si dimostra che la legge con cui cambiano tensione, carica e corrente nei transitori di questo tipo è del tipo esponenziale decrescente3).

Esponenziale decrescente

La funzione esponenziale decrescente, nella sua forma più semplice possibile, è questa:

`y(t) = e^(-t)`

E' una funzione del tempo dove compaiono il numero di Nepero e (un numero irrazionale con infiniti decimali che approssimeremo a 2.71) e il tempo all'esponente con segno meno. Dopo pochi secondi il valore della funzione diventa si avvicina sempre più allo zero (l'andamento è asintotico) e può essere considerato costante.

La caratteristica di questo tipo di funzione è che inizialmente cambia rapidamente poi sempre più lentamente fino ad assumere un valore praticamente costante.

Aggiungendo un parametro la funzione diventa:

`y(t)=e^(-t/tau)`

dove τ è la costante di tempo espressa in secondi. L'andamento nel tempo ora è tale per cui ogni τ secondi il valore di y viene diviso per e. Il valore può essere considerato costante dopo un tempo pari a circa cinque volte la costante di tempo.

La formulazione più generica di una funzione esponenziale decrescente prevede tre parametri:

`y(t)=Y_f - (Y_f - Y_i)e^(-t/tau)`

dove Yi e Yf sono i valori iniziale e finale, che nelle espressioni precedenti valevano 1 e 0.

Per comprenderne meglio il funzionamento si può provare a modificare i parametri di una funzione esponenziale decrescente in questografico interattivo.

Tornando al transitorio di carica di un condensatore possiamo esprimere i valori di carica, tensione e corrente con tre leggi esponenziali:

carica tensione corrente
valore iniziale `Q_i= 0` `V_i=0` `I_i= V/R`
valore finale `Q_f= CV` `V_f=V` `I_f= 0`
legge`q(t)=CV-CV e^(-t/tau)``v(t)=V-V e^(-t/tau)``i(t)=V/R e^(-t/tau)`

dove la costante di tempo vale:

`tau = RC`

Osservando i grafici notiamo che:

  • la carica dura circa 5τ
  • la retta che coincide con la pendenza iniziale delle curve incontra il valore finale dopo un tempo pari a τ
  • il valore assunto dopo τ secondi è circa il 63% del valore finale

Scarica

Per la scarica valgono considerazioni analoghe. Osservando il circuito di figura 4 e con le dovute ipotesi si osserverà l'andamento di figura 5, valido per tutte e tre le grandezze. La costante di tempo vale sempre RC e le tre esponenziali, supposto il condensatore inizialmente carico alla tensione VC, sono riportate nella tabella sotto.

carica tensione corrente
valore iniziale `Q_i= CV_C` `V_i=V_C` `I_i= V_C/R`
valore finale `Q_f= 0` `V_f=0` `I_f= 0`
legge`q(t)=CV_C e^(-t/tau)``v(t)=V_C e^(-t/tau)``i(t)=V_C/R e^(-t/tau)`

Extra

  • scheda di laboratorio 2C.1: funzione esponenziale con un foglio di calcolo (excel o simili)

2 La risposta al gradino

Nel caso più generico possibile si suppone il condensatore inizialmente carico a una tensione Vi; applicando un gradino di tensione si avrà la carica (o scarica) per arrivare al nuovo valore Vf. Il circuito di figura 9a mostra un segnale a gradino applicato ad un condensatore mentre la figura 9b, ad essa equivalente, produce gli stessi effetti con la commutazione di un deviatore tra i due generatori.

In questo caso, per le tre grandezze valgono le formule:

carica tensione corrente
valore iniziale `Q_i=C V_i` `V_i` `I_i= (V_f-V_i)/R`
valore finale `Q_f= CV_f` `V_f` `I_f= 0`
legge`q(t)=Q_f-(Q_f-Q_i) e^(-t/tau)``v(t)=V_f-(V_f-V_i) e^(-t/tau)``i(t)=(V_f-V_i)/R e^(-t/tau)`

Extra

  • scheda di laboratorio 2C.2: carica e scarica di un condensatore con un onda quadra

3 Circuiti derivatore e integratore

Applicando un'onda quadra con periodo >> 5τ è possibile osservare la carica e scarica di un condensatore all'oscilloscopio. Se il circuito è quello di figura 12 è possibile individuare i fronti di salita e discesa dell'onda quadra. Questo circuito è detto derivatore.

Applicando un'onda quadra con periodo << 5τ la carica e scarica non possono mai completarsi. Il segnale in uscita assume una forma d'onda quasi triangolare. Se il circuito è quello di figura 13 è possibile osservare questo segnale triangolare “centrato” sul valor medio dell'onda quadra. Questo circuito è detto derivatore.

Torna all'indice.

1)
con generatori di tensione continua
2)
non viene mostrato il grafico della carica perché il suo andamento ricalca quello della tensione ad essa proporzionale
3)
NB: ciò che decresce al passare del tempo non è il valore della grandezza ma la velocità con cui cambia nel tempo
This website uses cookies for visitor traffic analysis. By using the website, you agree with storing the cookies on your computer.More information
sezione_2c.txt · Ultima modifica: 2018/12/12 19:21 da admin